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1. Preliminaries

In 1972 authors of [2] considered subsets of additive groups of integers modulo p

for which the sums are smaller than the differences and cited various contexts in which
the problem of finding such sets had been evoken. Since then several papers in that
spirit have appeared. Here we respond to the need of solving the opposite problem,
i.e. finding sets with sums bigger in cardinality than the corresponding differences.
Cf. [1] for applications and more bibliographical references.

Let for A, B � R, A � B :� tx � y : x P A, y P Bu. For any set A, its cardinality
will be denoted by #A. To avoid ambiguity, agree that the ellipsis ‘. . . ’ in m, . . . , n,
abbreviates an arithmetic progression of length n � m � 1 with first term m and
common difference equal to 1. By ra, bs we will denote closed interval both on the real
line and restricted to integers. We make no distinction in notation, which we hope
to be clear from the context. Furthermore, for a ‘punched’ interval, we will write
v

ÝÝÑm, nw :�
 

m� 2j : j � 0, . . . ,
X

n�m
2

\(

. Let Zp :� t0, . . . , p� 1u, where p P N, p ¥ 2.
We are interested in subsets of Zp for which the inequality
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#ppA�Aq mod pq ¡ #ppA�Aq mod pq (1)

holds. Although it is an easy check that for small p, say p ¤ 7, such sets do not ex-
ist, the computational complexity of the problem increases exponentially with p.
The Matlab solution used for the purpose of the hereby publication is presented
and explained in Appendix. By searching over all subsets of Zp one can find that
for p P t1, . . . , 11u Y t13u there are no such sets. Surprisingly they appear at p � 12.

Fact 1.1. For any set A of the following form

t0, 1, 3, 4, 5, 8u,

t0, 3, 4, 5, 7, 8u,

t0, 1, 2, 4, 5, 9u,

t1, 2, 4, 5, 6, 9u,

t1, 4, 5, 6, 8, 9u,

t0, 4, 5, 7, 8, 9u,

t1, 2, 3, 5, 6, 10u,

t2, 3, 5, 6, 7, 10u,

t0, 1, 2, 5, 9, 10u,

t2, 5, 6, 7, 9, 10u,

t0, 1, 5, 8, 9, 10u,

t1, 5, 6, 8, 9, 10u,

t0, 2, 3, 4, 7, 11u,

t2, 3, 4, 6, 7, 11u,

t0, 1, 3, 4, 8, 11u,

t3, 4, 6, 7, 8, 11u,

t0, 1, 4, 8, 9, 11u,

t0, 4, 7, 8, 9, 11u,

t1, 2, 3, 6, 10, 11u,

t0, 2, 3, 7, 10, 11u,

t0, 3, 7, 8, 10, 11u,

t3, 6, 7, 8, 10, 11u,

t1, 2, 6, 9, 10, 11u,

t2, 6, 7, 9, 10, 11u,

we have:
pA�Aq mod 12 � Z12, pA�Aq mod 12 � Z12zt6u,

and each set from the list can be described in terms of any other as p�A� kq mod p,
where k P Z. Moreover, the list is complete—no other set satisfies (1) in Z12.

The following general observation needs no proof.

Property 1.2. If B � p�A� kq mod p, A � Zp, k P Z, then

#ppB�Bq mod pq � #ppA�Aq mod pq, #ppB�Bq mod pq � #ppA�Aq mod pq.

Similarly, it can be easily seen that the structure of sets satisfying (1) is restricted,
no such set, nor its shift, can be symmetric. For if A � B � k, B � �B, then

A�A � B � k �B � k � B � k � pB � kq � 2k � A�A� 2k

and so A does not satisfy (1). Nevertheless, as it will be shown in Fact 2.2, a set
satisfying (1) can be its own non-trivial shift.

We define an equivalence relation in Zp by saying that

A � B when B � p�A� kq mod p, for some k P Z,

The equivalence classes of the relation will be referred to as orbits. For A P Zp its orbit
will be denoted by orb A. Thus, by finding a set with property (1) we get for free
2p such sets—as we will see—not necessarily distinct, yet sharing some properties,
including the cardinality and structure. Let for p, k P N, Dppkq denote the collection
of subsets of Zp such that
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#ppA�Aq mod pq � #ppA�Aq mod pq � k,

and dppkq the collection of the corresponding orbits. Finally, let Dp :�
�

k¡0
Dppkq

and dp �
�

k¡0
dppkq. By Fact 1.1 we see that

• #D12p1q � 24, # d12p1q � 1,
• pA�Aq mod 12 � Z12 for each A P D12,
• D12pkq � ∅, for k ¡ 1,
• #A � 6 for each A P D12.

Hence natural questions rise.

Question 1.3. Is it possible that #Dppkq � 2p � # dppkq? How are these numbers
related to p?

Question 1.4. Is it possible that pA�Aq mod p � Zp for A P Dp?

Question 1.5. For which p would Dppkq be non-empty for k ¡ 1?

Question 1.6. How can sizes of sets in Dppkq vary?

Here is a sample of what computer aided calculations reveal.

Fact 1.7. #D14 � 28, D14 � D14p1q, # d14p1q � 1 and for each A P D14 one has
pA�Aq mod 14 � Z14, pA�Aq mod 14 � Z14zt7u. The complete list of D14 follows:

t0, 1, 3, 4, 5, 6, 9u,

t0, 3, 4, 5, 6, 8, 9u,

t1, 2, 4, 5, 6, 7, 10u,

t1, 4, 5, 6, 7, 9, 10u,

t0, 1, 2, 3, 5, 6, 11u,

t2, 3, 5, 6, 7, 8, 11u,

t2, 5, 6, 7, 8, 10, 11u,

t0, 5, 6, 8, 9, 10, 11u,

t1, 2, 3, 4, 6, 7, 12u,

t3, 4, 6, 7, 8, 9, 12u,

t0, 1, 2, 3, 6, 11, 12u,

t3, 6, 7, 8, 9, 11, 12u,

t0, 1, 6, 9, 10, 11, 12u,

t1, 6, 7, 9, 10, 11, 12u,

t0, 2, 3, 4, 5, 8, 13u,

t2, 3, 4, 5, 7, 8, 13u,

t0, 1, 2, 4, 5, 10, 13u,

t4, 5, 7, 8, 9, 10, 13u,

t0, 1, 2, 5, 10, 11, 13u,

t0, 5, 8, 9, 10, 11, 13u,

t1, 2, 3, 4, 7, 12, 13u,

t0, 1, 3, 4, 9, 12, 13u,

t0, 1, 4, 9, 10, 12, 13u,

t4, 7, 8, 9, 10, 12, 13u,

t0, 2, 3, 8, 11, 12, 13u,

t0, 3, 8, 9, 11, 12, 13u,

t1, 2, 7, 10, 11, 12, 13u,

t2, 7, 8, 10, 11, 12, 13u.

2. Surviving patterns

The similarities of structures between sets from D14 and from D12 suggest the ex-
istence of certain patterns preserved with increasing p, at least for even p. Indeed,
we have

Fact 2.1. Let p � 2n, n ¥ 6. The conditions

A�A � Zp, A�A � Zpz

 

p

2

(

, (2)

hold for each of the following sets (the order of which mocks that from Fact 1.1)
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t0, 1u Y r3, n� 1s Y tn� 2u, (3)

t0u Y r3, n� 1s Y tn� 1, n� 2u,

r0, n� 4s Y tn� 2, n� 1, 2n� 3u,

tn � 5, n� 4u Y rn� 2, 2n� 6s Y t2n� 3u,

t1, 2u Y r4, ns Y tn � 3u,

+

(4)

tn � 5u Y rn� 2, 2n� 6s Y t2n� 4, 2n� 3u,

t1u Y r4, ns Y tn� 2, n� 3u,

+

(5)

t0, n� 2, n� 1u Y rn� 1, 2n� 3s,

r1, n� 3s Y tn� 1, n, 2n� 2u,

tn� 4, n� 3u Y rn� 1, 2n� 5s Y t2n� 2u,

r0, n� 4s Y tn� 1, 2n� 3, 2n� 2u,

tn� 4u Y rn� 1, 2n� 5s Y t2n� 3, 2n� 2u,

t0, 1, n� 1u Y rn� 2, 2n� 2s,

t1, n� 1, nu Y rn� 2, 2n� 2s,

t0u Y r2, n� 2s Y tn� 1, 2n� 1u,

r2, n� 2s Y tn, n� 1, 2n� 1u,

r0, n� 5s Y tn� 3, n� 2, 2n� 4, 2n� 1u,

tn� 3, n� 2u Y rn, 2n� 4s Y t2n� 1u,
�

0,
P

n
2

T

� 2
�

Y tn � 2u Y
�

n�
P

n
2

T

� 1, 2n� 3
�

Y t2n� 1u,

r1, n� 3s Y tn, 2n� 2, 2n� 1u,

+

(6)

t0, n� 2u Y rn� 1, 2n� 3s Y t2n� 1u,

t0, 1, 3, 4, n� 2u Y rn� 5, 2n� 1s,

+

(7)

t1, 2, 3, nu Y rn� 4, 2n� 1s, n � 7,

t0, 1, 4, n� 2, n� 3u Y rn� 5, 2n� 1s,

+

(8)

t0, 2, 3, n� 1u Y rn� 4, 2n� 1s,

t0, 3, n� 1, n� 2u Y rn� 4, 2n� 1s,

tn� 3u Y rn, 2n� 4s Y t2n� 2, 2n� 1u,

t1, 2, nu Y rn� 3, 2n� 1s,

t2, n, n� 1u Y rn� 3, 2n� 1s.

Note that however for p � 2n � 12 the sets (4)–(8) mutually coincide, for n ¡ 6
they differ. Assertion (2) for each of the mentioned sets can be easily verified
by a direct computation. We will show it for set (3), leaving the remaining proofs
to the reader. We have
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�

pt0, 1u Y r3, n� 1s Y tn� 2uq�

�pt0, 1u Y r3, n� 1s Y tn� 2uq
�

mod 2n �

� t0, 1, 2u Y r3, ns Y tn� 2, n� 3u Y r6, 2n� 2s Y rn� 5, 2n� 1s mod 2n � Z2n,

provided that n ¥ 5 (so that one can glue together r3, ns and r6, 2n�2s) and 2n�2 ¥
n � 4, which means n ¥ 6 (in order to glue together r6, 2n� 2s and rn� 5, 2n� 1s).
Now, for the difference, we have

�

pt0, 1u Y r3, n� 1s Y tn� 2uq�

�pt0, 1u Y r3, n� 1s Y tn� 2uq
�

mod 2n �

� pr2� n, n� 2s Y r3, n� 1s Y r1� n,�3sq mod 2n � Z2nztnu.

The cardinalities of the considered classes of sets are listed below. Even and odd p

are listed separately.

p � 2n #Dp # dp #Dpp2q # dpp2q #Dpp3q # dpp3q

¤ 10 0 0 0 0 0 0
12 24 1 0 0 0 0
14 28 1 0 0 0 0
16 384 12 0 0 0 0
18 792 22 0 0 0 0
20 5440 136 80 2 0 0
22 15224 346 660 15 0 0
24 70632 1472 1176 25 0 0
26 218192 4196 9360 180 0 0
28 922348 16471 38780 693 336 6
30 2669760 44497 127320 2123 2220 37

p � 2n� 1 #Dp # dp #Dpp2q # dpp2q #Dpp3q # dpp3q

¤ 13 0 0 0 0 0 0
15 60 2 0 0 0 0
17 272 8 0 0 0 0
19 1026 27 0 0 0 0
21 4746 113 630 15 0 0
23 15686 341 1012 22 0 0
25 56000 1120 7500 150 0 0
27 184194 3411 25272 468 0 0
29 656096 11312 103124 1778 0 0

Note that for p � 24 and 28 the equality #Dp � 2p � # dp fails. The culprit in Z24 is

A � t0, 1, 3, 4, 5, 8, 12, 13, 15, 16, 17, 20u �

� t0, 1, 3, 4, 5, 8uY p12� t0, 1, 3, 4, 5, 8uq P D24p2q

and its orb A with cardinality 24, unlike all the other orbits each consisting of 48
different sets. In Z28 the situation is similar. Indeed, we have
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#D24 � 70632 � 1471 � 48� 24 and #D28 � 922348 � 16470 � 56� 28.

This should come as no surprise, in the light of the following observation.

Fact 2.2. Let A P Dp for some p ¥ 12 and

B �

k�1
¤

j�0

pA� jpq, k ¡ 1.

Then B P Dkp and # orb B ¤ 2p.

Proof. That # orb B ¤ 2p is obvious, as pB� jpq mod kp � B. We have A�A � Z2p

and hence A � A � A1 Y A2, where A1 � Zp, A2 � Zp � p. Since A � Zp, we have
A� jp � Zp � jp and so B � Zkp. Furthermore

pB �Bq mod kp �

2pk�1q
¤

j�0

pA�A� jpq mod kp �

�

�

k�1
¤

j�0

pA�A� jpq mod kp �

�

k�1
¤

j�0

ppA1 YA2q � jpq mod kp �

�

k�1
¤

j�0

ppA1 � jpq Y pA2 � jpqq mod kp �

� A1 Y

k�2
¤

j�0

�

pA2 � jpq Y pA1 � pj � 1qpq
	

Y

Y pA2 � pk � 1qpq mod kp �

� A1 Y pA2 � pq Y

k�2
¤

j�0

�

pA2 � jpq Y pA1 � pj � 1qpq
	

�

�

k�1
¤

j�0

ppA�Aq mod p� jpq,

the equality ‘�’ being a consequence of pA �A � pk � jqpq mod kp � A� A� jp for
j P Z. Since pA�Aq mod p � Zp,

#ppB �Bq mod kpq � k#ppA �Aq mod pq.

Finally

B �B �

k�1
¤

j�0

pjp�A�Aq,

hence #ppB �Bq mod kpq ¤ k#ppA�Aq mod pq. [\
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Thus, Question 1.3 can be answered as follows: #Dp can be smaller than 2p �# dp,
since for large p there are sets in Dp with relatively small orbits.

Fact 2.3. If A P Dppkq, and m P N, then mA P Dmppmkq.

Proof. We have mppA�Aq mod pq � pmpA�Aqq mod mp � pmA�mAq mod mp. [\

Example 2.4. For the set A � t0, 6, 8, 10, 14, 16u � 2 � t0, 3, 4, 5, 7, 8u � Z24 we have

#ppA�Aq mod 24q � 12 and #ppA�Aq mod 24q � 10.

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 p

0.001

0.002

0.003

0.004

0.005

0.006

Fig. 1. p#Dpq{2
p against p

Figures 1 and 2 exhibit how #Dp is related to 2p and to #Dp�2, respectively.
What can be observed is the cardinality of Dp stabilising in the interval r0.001, 0.005s
of the entire Zp and the evident gap between p odd and even. In comparison of sizes
of Dp and Dp�2 repeating peaks are observed for multiples of 4.

3. Odd p

Fact 3.1. By the symmetry of the difference mod p, no set in D2n�1p2m � 1q can
give pA�Aq mod p2n� 1q � Z2n�1.

By this, Question 1.4 is answered affirmatively.
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16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 p

2

4

6

8

10

12

14

Fig. 2. p#Dpq{p#Dp�2q against p

Example 3.2. Let B � t0, 1, 3, 4, 5, 8u and C � t0, 1, 2, 6, 8, 10u. We have

orb B X orb C � ∅,

D15 � D15p1q � orb B Y orb C,

pB �Bq mod 15 � Z15zt14u, pB � Bq mod 15 � Z15zt6, 9u,

pC � Cq mod 15 � Z15zt13u, pC � Cq mod 15 � Z15zt3, 12u.

Fact 3.3. The sets B and C from the example above again fall into patterns which
survive in Dp increasing p � 2n � 1. Namely, for the following subsets of Z2n�1,
n ¡ 6,

B :� t0, 1u Y r3, n� 2s Y tn� 1u, C :� t0, 1, 2u Y v

ÝÝÝÝÝÑ

6, 2n� 4w,

one has

pB �Bq mod p2n� 1q � Z2n�1zt2nu,

pB �Bq mod p2n� 1q � Z2n�1ztn� 1, n� 1u,

pC � Cq mod p2n� 1q � Z2n�1zt2n� 1u,

pC � Cq mod p2n� 1q � Z2n�1zt3, 2n� 2u.

By this and Fact 2.1 we have

Corollary 3.4. There is a surviving pattern which works for both even and odd p,
namely:

t0, 1u Y r3, n� 1s Y tn� 2u P D2np1q XD2n�3p1q.
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Fact 3.5. In Z17 we have D17 �

�

8

j�1
orb Aj, where

A1 � t0, 1, 3, 4, 5, 6, 9u,

A2 � t0, 1, 4, 5, 6, 7, 11u,

A3 � t0, 1, 3, 6, 8, 9, 11u,

A4 � t0, 1, 2, 4, 8, 10, 11u,

A5 � t0, 3, 4, 5, 7, 8, 12u,

A6 � t0, 1, 2, 6, 8, 10, 12u,

A7 � t0, 1, 4, 5, 8, 11, 12u,

A8 � t0, 2, 4, 6, 9, 11, 14u.

Note that A1 and A6 follow the pattern from Fact 3.3. Moreover, A2 and A8 can
be described respectively as

D � t0, 1u Y r4, n� 1s Y tn� 3u � Z2n�1,

F � v

ÝÝÝÝÝÝÑ

0, 2n� 10w Y t2n� 7, 2n� 5, 2n� 2u � Z2n�1, n ¥ 8,

for which

pD �Dq mod p2n�1q � Z2n�1zt3u, pD �Dq mod p2n�1q � Z2n�1ztn, n� 1u,

pF � F q mod p2n�1q � Z2n�1zt2n� 7u, pF � F q mod p2n�1q � Z2n�1zt1, 2nu.

Finally, A5 and A7 can be described respectively as

E � t0u Y
n�1
¤

k�1

r4k � 1, 4k � 1s Y t4n� 1, 4n, 4n� 4u � Z8n�1, n ¥ 2,

G �

n�3
¤

k�0

t4k, 4k � 1u Y t4n� 8, 4n� 5, 4n� 4u � Z4n�1, n ¥ 4,

for which

pE �Eq mod p8n � 1q � Z8n�1zt1u,

pE �Eq mod p8n � 1q � Z8n�1zt4n� 2, 4n� 3u,

pG�Gq mod p4n � 1q � Z4n�1zt4n� 2u,

pG�Gq mod p4n � 1q � Z4n�1zt2, 4n� 1u.

4. Increasing k in Dppkq

Let us restate Question 1.5 as follows.

Question 4.1. Given k P N can one find p0 P N such that Dppkq � ∅ for all p ¥ p0?

So far we know that

Fact 4.2. For each k ¥ 0 and n � 6� 4k and the following set A � Z2n

A �

n

4
�

3

2
¤

j�0

t2� 8j, 6� 8j, 7� 8ju Y r2n� 3, 2n� 1s,
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the conditions

pA�Aq mod 2n � Z2n and pA�Aq mod 2n � Z2nz

n

4
�

3

2
¤

j�0

t6� 8ju

hold. In other words
#ppA�Aq mod 2nq � 2n� k � 1.

Hence we have

Corollary 4.3. For k ¡ 0, d4�8kpkq � ∅.

Fact 4.4. For n ¥ 9k � 1 and the following A � Z2n�1

A � t4ku Y rn� k, n� 3ks Y rn� 5k � 1, 2ns,

the conditions

pA�Aq mod p2n�1q � Z2n�1 and ppA�Aq mod p2n� 1qqXrn�k�1, n�ks � ∅

hold. Furthermore, for n ¥ 9k � 3 and the following A � Z2n

A :� t4k � 2u Y rn� k � 1, n� 3k � 2s Y rn� 5k � 2, 2n� 1s,

what follows holds.

pA�Aq mod 2n � Z2n and ppA�Aq mod 2nq X rn� k � 1, n� k � 1s � ∅.

Corollary 4.5. For each k P N there is a p (namely: p � 3 � 9k) such that there
exists an A � Zp for which

#ppA�Aq mod pq � p and ppA�Aq mod pq X ra, bs � ∅,

where #ra, bs � k and b�a
2

�

p
2
.

Question 4.6. Are the numbers 8k and 9k (in 4� 8k and 3� 9k, respectively) from
the obove facts optimal?

Question 4.7. How does Dppmq behave between 4� 8k and 4� 8pk � 1q?

Here is what we know about how the sizes of sets from each class may vary, cf. Ques-
tion 1.6. In each case mp stands for the minimum and Mp for the maximum of #A,
where A P Dp, cf. list of orbit generators in the Appendix.
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p mp Mp mpp2q Mpp2q mpp3q Mpp3q

12 6 6 — — — —
14 7 7 — — — —
16 7 8 — — — —
18 7 9 — — — —
20 8 10 9 9 — —
22 7 11 8 9 — —
24 6 12 9 12 — —
26 8 13 9 11 — —
28 7 14 8 14 10 12
30 6 15 9 14 10 12

p mp Mp mpp2q Mpp2q mpp3q Mpp3q
15 6 6 — — — —
17 7 7 — — — —
19 7 8 — — — —
21 7 9 8 9 — —
23 8 10 9 10 — —
25 8 11 9 11 — —
27 8 12 9 12 — —
29 8 13 9 13 — —

Let us comment on the diagram above. Mp seems to be always equal to p{2 for even
p and pp� 3q{2 for odd. A false impression one could have is that mp increases with
p for odd p. Actually, as Fact 2.3 shows, for p � 45 we can expect mp ¤ 6. On the
other hand, mp   6 looks unlikely.

5. Real analysis applications

One of the applications of the hereby considerations is shown in [1], where a set
from D12 is used to construct a compact subset of R (endowed with the Euclidean
topology) such that

intpX �Xq � ∅ and X �X is Lebesgue null.

We will now make only a few notes akin, cf. also [3]. Let for A � Z and p P N,

XpA, pq �
!

°

8

j�1
ajp�j : aj P A

)

.

Fact 5.1. If tk, k�1u � A � Z2p, and A mod p � Zp then XpA, pq contains infinitely
many intervals and hence has a positive interior measure.

Proof. As we will show all intervals of the form

ņ

j�1

ajp�j
� p�n�1

rk � 1, k � 2s,

where n P N, aj P A, aj   p, are contained in XpA, pq. Thus, given
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x �

ņ

j�1

ajp�j
� q � p�n�1, for some q P rk � 1, k � 2s,

we need to find
tampqqu

8

m�0
, ampqq P A, for m ¥ 0,

so that

q �

8

¸

m�0

ampqqp
�m.

Let q :�
°

8

m�0
qmp�m, where qm P t0, . . . , p� 1u and taru

µ
r�1

:� AX Zp, ta1su
ν
s�1 :�

AXpp�Zpq. By assumption we either have q0�q1p�1
� k�a1s for some s P t1, . . . , νu

or q0�q1p�1
� k�1�ar for some r P t1, . . . , µu. Hence we have found candidates for

a0pqq and a1pqq. Note that these may need to be reduced by subtracting 1 accordingly
to whther a carry will occur. The remaining digits of q can be found in either AXZp

or AX pp � Zpq by a similar reasoning. [\

Fact 5.2. Let B � tb, . . . , m � 1, m � 2, . . . , p � du, where m � 1 ¤ d   p � 1.
Complement of XpB, pq contains infitively many intervals.

Proof. It can be checked that no interval of the form

n�1̧

j�1

bjp�j
� p�n

�

m �

d� 1

p� 1
, m� 2�

b

p� 1




,

where bj P tb, m� 2u, is contained in XpB, pq. [\

Fact 5.3. The same applies when m ¡ p.

Example 5.4. For A � t0, 1, 3, 4, 5, 8u P D12 we have what follows:

A�A � t0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16u,

14, 15 R A�A,

pA�Aq mod 12 � Z12,

hence XpA�A, 12q contains some intervals and ommits some other.

Appendix

Matlab codes

This section contains Matlab codes used for the purpose of the hereby paper.
The following strategy has been applied

1. Convert the numbers n P t0, . . . , 2p
u to subsets of Zp by means of the binary

expansion, e.g.: 11 ÞÑ t0, 1, 3u.
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2. For each subset A � Zp, compare the sizes of Cayley tables for addition and
subtraction modulo p (results of functions sm and dm respectively) and whenever

#ppA �Aq mod pq ¡ #ppA�Aq mod pq

then append A to the list.

A set is appended to the list together with the corresponding difference of sizes,
i.e. sd. For bigger p searching over 2p subsets takes much time, therefore, the second
argument of sumdiff is responsible for the consecutive portion of data. The portion
sizes are fixed as 225, the variable k is the portion count.

-1 function B = dm(A, p)

1 B=mod( bsxfun (@minus ,A,A’ ) , p ) ;
2 B( isnan (B) ) = [ ] ;
3 B=unique (B) ;
4 end

The function dm(A,p) finds pA�Aq mod p as follows

1 The Cayley table for A�A is produced and reduced modp.
2 Since A is a row of a matrix of a fixed width, it may contain some NaNs (not-a-

numbers). Here they are deleted from pA�Aq mod p.
3 The Cayley table contains repetitions. Here they are deleted.

-1 function B = sm(A, p)

1 B=mod( bsxfun ( @plus ,A,A’ ) , p ) ;
2 B( isnan (B) ) = [ ] ;
3 B=unique (B) ;
4 end

The function sm(A,p) does the same for the sum in place of the difference.

-1 function C = cat2 (A,B)

1 i f s ize (A,2) < s ize (B, 2 )
2 A=[A,NaN. ∗ ones ( s ize (A, 1 ) , s ize (B,2)� s ize (A, 2 ) ) ] ;
3 e l s e i f s ize (A,2) > s ize (B, 2 )
4 B=[B,NaN. ∗ ones ( s ize (B, 1 ) , s ize (A,2)� s ize (B , 2 ) ) ] ;
5 end

6 C=[A;B ] ;
7 end

Vectors representing sets may have different lengths, hence the function cat2 is defined
to handle concatenation of matrices of possibly different widths. This is achieved by
concatenating an appropriate number of NaNs to each row which is too short.
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-1 function [A, t ] = sumdi f f (p , k )

1 po r t i on =25;
2 A= [ ] ;
3 for i =(k�1)∗2ˆ po r t i on :min( k∗2ˆ port ion �1 ,2ˆp�1)
4 d2bei=find (mod( f loor ( i . / 2 . ˆ [ 0 : log2 ( i ) ] ) , 2 ) ) �1 ;
5 sd=s ize (sm( d2bei , p) ,1)� s ize (dm( d2bei , p ) , 1 ) ;
6 i f sd>0
7 A=cat2 (A, [ sd ,NaN, d2bei ] ) ;
8 end

9 end

10 end

The function sumdiff(p,k) does the crucial work.

1 The portion of Zp is set.
2 The resulting matrix is initialized for future reference.

3–9 The sets fulfilling the condition

#ppA�Aq mod pq ¡ #ppA �Aq mod pq

are filtered and appended to the result.
4 The variable d2bei holds the number as a list of non-zero powers of 2 in the

binary expansion (i.e. a subset of Zp).
5 The number #ppA�Aq mod pq � #ppA�Aq mod pq is found and kept as sd.

6–8 The current set with its sd (separated by a NaN) is appended to the result if
sd ¡ 0.

Finally, the function sdnew finds the generators of orbits in a given list of sets. An
optional argument is a list of the possibly already found generators:

-1 function [B, t ] = sdnew (A, p ,C)

1 B= [ ] ;
2 i f isnan (A( 1 , 2 ) ) ; A=A( : , 3 : end ) ; end ;
3 A=A(A( : , 1 ) = = 0 , : ) ;
4 i f nargin<3
5 C= [ ] ;
6 B(1 , : )=A( 1 , : ) ;
7 j0 =2;
8 else

9 B=C;
10 j0 =1;
11 end

12 B( isnan (B))=�1;
13 for j=j0 : s ize (A, 1 )
14 f l a g =1;
15 A1=sort (mod( bsxfun ( @plus ,A( j , : ) , [ 0 : p�1 ] ’ ) , p ) , 2 ) ;
16 A2=sort (mod( bsxfun ( @plus ,�A( j , : ) , [ 0 : p�1 ] ’ ) , p ) , 2 ) ;
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17 A1( isnan (A1))=�1;
18 A2( isnan (A2))=�1;
19 i f any ( ismember (A1 ,B, ’ rows ’ ) ) | | . . .
20 any ( ismember (A2 ,B, ’ rows ’ ) )
21 f l a g =0;
22 end

23 i f f l a g
24 B=cat2 (B,A( j , : ) ) ;
25 end

26 end

27 i f ˜ isequal (C , [ ] )
28 B( 1 : s ize (C, 1 ) , : ) = [ ] ;
29 end

30 B(B==�1)=NaN;
31 end

1 The output matrix B is initialized.
2 The input optionally carries now irrelevant information about the difference be-

tween the sizes of sum and differerence. This is stored in the first column and
separated from the current set with a NaN in the second column. Both are now
cancelled.

3 Only the sets containing 0 are relevant. Any set not containing 0 has in its orbit
a set that does contain 0.

4–11 If the third argument is dropped, the sets in the input will be compared to the first
set and then possibly to other flagged as orbit generators. The first set doesn’t need
to be compared with itself, hence the comparison starts with j0=2. Otherwise, ie.
when there is a list of so far found generators (an optional C), all the input must
be checked and compared with C.

12,17,18 The crucial work here is done by the ismember function which does not handle
NaNs properly, hence the NaNs are changed into �1’s.

13–26 Input sets are one by one compared to the already chosen orbit generators and if
none of the shifts nor its opposite mod p of the current set is found, the current
set is appended to the list of generators.

14 Each set is by default flagged as the orbit generator.
15–16 All the shifts mod p and the opposites mod p are calculated.
19–22 If any of the shifts or its opposite is found on the list of the already found gener-

ators, it is flagged off.
23–25 The current set, if flagged, is appended to the list of generators.
27–29 The output is planned as the list of generators filtered from the input only. Hence

the optional list of generators (the third argument of the function) is removed
from the output.

30 The NaNs return (cf. 12,17,18).



164 R. Zduńczyk

List of the orbit generators

Finally, let us list orbit generators for small p.

D12 :t0, 1, 3, 4, 5, 8u,

D14 :t0, 1, 3, 4, 5, 6, 9u,

D15 :

#

t0, 1, 3, 4, 5, 8u,

t0, 1, 2, 6, 8, 10u

D17 :

$

'

'

'

'

'

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

'

'

'

'

'

%

t0, 1, 3, 4, 5, 6, 9u,

t0, 1, 4, 5, 6, 7, 11u,

t0, 1, 3, 6, 8, 9, 11u,

t0, 1, 2, 4, 8, 10, 11u,

t0, 3, 4, 5, 7, 8, 12u,

t0, 1, 2, 6, 8, 10, 12u,

t0, 1, 4, 5, 8, 11, 12u,

t0, 2, 4, 6, 9, 11, 14u,

D16 :

$

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

%

t0, 1, 3, 4, 5, 6, 10u,

t0, 1, 3, 4, 5, 7, 10u,

t0, 1, 3, 5, 6, 7, 10u,

t0, 1, 3, 4, 5, 6, 7, 10u,

t0, 1, 2, 4, 5, 7, 11u,

t0, 1, 2, 4, 6, 7, 11u,

t0, 1, 2, 4, 5, 6, 7, 11u,

t0, 1, 3, 4, 5, 8, 12u,

t0, 2, 5, 6, 7, 9, 12u,

t0, 2, 3, 5, 6, 7, 9, 12u,

t0, 1, 3, 5, 6, 7, 10, 12u,

t0, 1, 4, 5, 8, 11, 12u,

D18 :

$

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'
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'

'

'

'

'

'

'
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'
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'

'
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'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

%

t0, 1, 3, 4, 5, 6, 7, 11u,

t0, 1, 3, 4, 5, 6, 8, 11u,

t0, 1, 3, 4, 6, 7, 8, 11u,

t0, 1, 3, 5, 6, 7, 8, 11u,

t0, 1, 3, 4, 5, 6, 7, 8, 11u,

t0, 1, 3, 5, 6, 7, 12u,

t0, 1, 2, 4, 5, 7, 8, 12u,

t0, 1, 2, 5, 6, 7, 8, 12u,

t0, 1, 2, 4, 5, 6, 7, 8, 12u,

t0, 2, 3, 5, 6, 7, 10, 13u,

t0, 1, 2, 7, 8, 10, 13u,

t0, 2, 3, 6, 7, 8, 10, 13u,

t0, 2, 5, 6, 7, 8, 10, 13u,

t0, 2, 3, 5, 6, 7, 8, 10, 13u,

t0, 1, 5, 6, 7, 8, 11, 13u,

t0, 1, 3, 5, 6, 7, 8, 11, 13u,

t0, 1, 2, 5, 6, 8, 12, 13u,

t0, 1, 4, 7, 8, 12, 13u,

t0, 1, 2, 5, 6, 7, 8, 12, 13u,

t0, 1, 4, 6, 7, 8, 11, 14u,

t0, 1, 3, 4, 6, 7, 8, 11, 14u,

t0, 1, 4, 6, 7, 8, 11, 12, 14u,

D20p2q :

#

t0, 1, 3, 4, 5, 8, 12, 13, 16u,

t01, 4, 5, 8, 9, 12, 15, 16u,

D19 :

$

'
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'
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'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

%

t0, 1, 3, 5, 6, 7, 10u,

t0, 1, 3, 4, 5, 6, 7, 10u,

t0, 1, 3, 5, 6, 9, 11u,

t0, 1, 4, 5, 6, 7, 8, 12u,

t0, 1, 2, 4, 5, 9, 12u,

t0, 2, 3, 5, 6, 7, 9, 12u,

t0, 1, 2, 5, 6, 8, 13u,

t0, 1, 2, 5, 6, 7, 8, 13u,

t0, 1, 2, 3, 8, 10, 13u,

t0, 1, 3, 4, 7, 11, 13u,

t0, 1, 3, 4, 7, 10, 11, 13u,

t0, 1, 2, 3, 8, 10, 11, 13u,

t0, 1, 3, 7, 9, 10, 11, 13u,

t0, 1, 3, 4, 5, 6, 9, 14u,

t0, 1, 3, 5, 6, 9, 11, 14u,

t0, 1, 2, 3, 8, 9, 11, 14u,

t0, 1, 6, 7, 10, 11, 14u,

t0, 1, 2, 6, 10, 12, 14u,

t0, 1, 2, 6, 8, 10, 12, 14u,

t0, 2, 3, 4, 7, 11, 12, 14u,

t0, 1, 4, 5, 8, 9, 13, 14u,

t0, 1, 3, 4, 5, 8, 12, 15u,

t0, 2, 5, 8, 10, 12, 15u,

t0, 1, 2, 6, 7, 11, 13, 15u,

t0, 1, 4, 5, 8, 11, 14, 15u,

t0, 2, 4, 6, 8, 11, 13, 16u,

t0, 2, 4, 6, 9, 11, 13, 16u,
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D21p2q :

$

'

'

'

'

'

'
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'

'
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t0, 1, 3, 5, 6, 7, 10, 12u,

t0, 1, 2, 5, 6, 8, 9, 14u,

t0, 1, 2, 5, 6, 7, 8, 9, 14u,

t0, 1, 3, 4, 6, 7, 8, 11, 14u,

t0, 1, 2, 3, 8, 9, 11, 14u,

t0, 1, 3, 4, 7, 11, 13, 15u,

t0, 1, 2, 4, 8, 11, 12, 14, 15u,

t0, 2, 5, 6, 7, 9, 11, 12, 16u,

t0, 1, 2, 3, 8, 9, 11, 14, 16u,

t0, 1, 2, 6, 7, 8, 12, 14, 16u,

t0, 2, 3, 4, 7, 11, 12, 14, 16u,

t0, 1, 4, 5, 9, 12, 15, 16u,

t0, 1, 4, 5, 8, 9, 12, 15, 16u,

t0, 2, 5, 7, 9, 12, 15, 17u,

t0, 2, 4, 6, 8, 11, 13, 15, 18u,

D22p2q :

$
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'
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%

t0, 1, 3, 5, 6, 7, 9, 14u,

t0, 1, 3, 5, 6, 7, 8, 9, 14u,

t0, 1, 3, 4, 5, 8, 13, 15u,

t0, 1, 3, 4, 5, 8, 12, 13, 15u,

t0, 2, 3, 5, 7, 8, 9, 11, 16u,

t0, 3, 5, 6, 7, 10, 12, 16u,

t0, 1, 3, 5, 6, 7, 10, 12, 16u,

t0, 3, 5, 6, 7, 9, 10, 12, 16u,

t0, 1, 2, 3, 8, 10, 13, 16u,

t0, 1, 2, 3, 8, 10, 11, 13, 16u,

t0, 1, 2, 3, 8, 10, 13, 15, 16u,

t0, 2, 5, 9, 10, 12, 13, 14, 17u,

t0, 1, 4, 7, 8, 12, 16, 17u,

t0, 1, 4, 7, 8, 11, 12, 16, 17u,

t0, 1, 4, 5, 9, 10, 13, 16, 17u,

D23p2q :
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%

t0, 1, 3, 5, 6, 7, 8, 11, 13u,

t0, 1, 2, 5, 6, 7, 9, 10, 15u,

t0, 1, 2, 5, 6, 7, 8, 9, 10, 15u,

t0, 1, 3, 4, 7, 8, 9, 12, 15u,

t0, 1, 3, 4, 6, 7, 8, 9, 12, 15u,

t0, 1, 2, 3, 5, 6, 11, 14, 15u,

t0, 2, 3, 4, 7, 11, 12, 14, 16u,

t0, 1, 2, 4, 5, 9, 12, 13, 14, 16u,

t0, 1, 2, 6, 7, 8, 13, 15, 17u,

t0, 1, 3, 4, 7, 11, 13, 15, 17u,

t0, 1, 6, 7, 9, 12, 14, 15, 17u,

t0, 1, 3, 4, 7, 11, 13, 14, 15, 17u,

t0, 1, 3, 5, 6, 7, 8, 11, 13, 18u,

t0, 1, 2, 5, 7, 11, 12, 14, 18u,

t0, 1, 3, 4, 5, 6, 9, 14, 15, 18u,

t0, 1, 4, 7, 10, 11, 14, 15, 18u,

t0, 1, 2, 6, 7, 8, 12, 14, 16, 18u,

t0, 1, 2, 7, 8, 10, 13, 15, 16, 18u,

t0, 2, 3, 7, 9, 12, 13, 14, 16, 19u,

t0, 2, 4, 7, 10, 12, 14, 17, 19u,

t0, 1, 4, 5, 8, 9, 12, 15, 18, 19u,

t0, 2, 4, 6, 8, 10, 13, 15, 17, 20u,

D28p3q :

$
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'
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'

'

'

'

'

'

'

'

%

t0, 2, 3, 5, 7, 9, 10, 11, 13, 20u,

t0, 1, 3, 6, 11, 12, 13, 18, 19, 21u,

t0, 1, 3, 5, 6, 7, 10, 12, 16, 22u,

t0, 1, 4, 5, 7, 8, 9, 12, 13, 16, 20, 24u,

t0, 1, 3, 4, 5, 8, 12, 13, 16, 20, 21, 24u,

t0, 1, 4, 5, 8, 11, 12, 16, 17, 20, 21, 24u,

D24p2q :
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%

t0, 1, 3, 4, 6, 7, 8, 11, 14u,

t0, 1, 3, 5, 6, 7, 8, 9, 10, 15u,

t0, 2, 3, 4, 7, 11, 12, 14, 16u,

t0, 1, 2, 4, 5, 9, 12, 13, 14, 16u,

t0, 1, 3, 4, 5, 8, 13, 15, 17u,

t0, 1, 3, 4, 5, 8, 12, 13, 15, 17u,

t0, 1, 2, 4, 5, 9, 12, 14, 16, 17u,

t0, 1, 2, 4, 9, 12, 13, 14, 16, 17u,

t0, 1, 2, 4, 5, 9, 12, 13, 14, 16, 17u,

t0, 1, 2, 3, 8, 10, 11, 13, 16, 18u,

t0, 1, 2, 7, 8, 10, 13, 15, 16, 18u,

t0, 1, 2, 4, 8, 11, 14, 15, 17, 18u,

t0, 1, 3, 4, 5, 6, 9, 14, 15, 19u,

t0, 2, 3, 4, 7, 11, 12, 14, 16, 19u,

t0, 2, 4, 7, 11, 12, 14, 15, 16, 19u,

t0, 2, 3, 4, 7, 11, 12, 14, 15, 16, 19u,

t0, 1, 2, 3, 8, 9, 11, 14, 17, 19u,

t0, 1, 2, 6, 10, 11, 15, 17, 19u,

t0, 1, 2, 3, 8, 9, 11, 14, 16, 17, 19u,

t0, 1, 4, 5, 7, 8, 9, 12, 13, 16, 20u,

t0, 1, 3, 4, 5, 8, 12, 13, 15, 17, 20u,

t0, 1, 3, 4, 5, 8, 12, 13, 16, 17, 20u,

t0, 1, 3, 4, 5, 8, 12, 13, 15, 16, 17, 20u,

t0, 1, 4, 5, 8, 9, 12, 13, 16, 19, 20u,

t0, 2, 4, 6, 8, 11, 13, 15, 18, 21u.
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